The Microstructural Evolution of Quartzite During Gradually Increasing Stress.
Abstract
In settings where rocks are exhumed along shear zones, mylonites are thought to experience a gradual increase in stress and localization as they approach the brittle-ductile transition (Figure 1. left panel). Our aim is to investigate the microstructural characteristics of experimental samples that have experienced such a stress path and make comparisons to natural samples. A common characteristic of recrystallized grains in shear zones is what appears, at least qualitatively, to be a bimodal distribution of grain size (Figure 1. right panel). We hypothesize that such distributions might form as a natural consequence of a gradual stress increase in rocks approaching the brittle-ductile transition. We carried out several general-shear, Griggs rig experiments on Arkansas novaculite ( 10 micron grain size) and Black Hills quartzite synthesized powder (10-20 micron) annealed at 915°C and confining pressure of 1.5 GPa. To simulate exhumation, stress was increased by gradually decreasing the temperature at various constant rates. Experimental design and mechanical data are presented along with a discussion on grain growth and evolution. Initial results show that the technique is able to successfully simulate the exhumation stress path. The experiments also show that novaculite is roughly twice as strong (at similar water concentrations) as Black Hills quartzite powder ( 10-20 microns). We anticipate that detailed, quantitative study of the microstructure and grain statistics of experiments of this type can lead to improved interpretation of the microstructural development of natural samples.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T21D2869S
- Keywords:
-
- 8012 High strain deformation zones;
- STRUCTURAL GEOLOGYDE: 8030 Microstructures;
- STRUCTURAL GEOLOGYDE: 8159 Rheology: crust and lithosphere;
- TECTONOPHYSICS