Origin and Timing of Dauphiné Twins Using Fluid Inclusions in Quartz-Cement Fractures in Sandstones from Diagenetic Environments
Abstract
Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Under diagenetic temperatures (<200°C) and burial depths less than 5 km Dauphiné twins are also common in isolated fracture quartz deposits spanning between fracture walls in low-porosity quartz-cemented sandstones. The twin boundaries coincide with fracture wall-normal fluid inclusion trails. The association of Dauphiné twins and fluid inclusion trails from which temperature and possibly timing can be inferred provides a way to research mechanism and timing of twinning, and potentially the magnitude of paleostrain and stress in some diagenetic settings. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions, ranging from 130°C to 159°C in the East Texas Basin, and from 162°C to 176°C in the Piceance Basin, record true trapping temperatures. Inclusions in wall-normal trails are large and irregularly shaped compared to those in wall-parallel trails, but both show similar liquid-to-vapor ratios. Trapping temperatures for wall-normal inclusion trails are usually higher than those in the wall-parallel trails. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and electron backscattered diffraction (EBSD) images demonstrates that the twin boundaries are localized along wall-normal inclusion trails. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails imply that twinning is a by-product of the formation of the wall-normal inclusion trails.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T21D2864F
- Keywords:
-
- 8012 High strain deformation zones;
- STRUCTURAL GEOLOGYDE: 8030 Microstructures;
- STRUCTURAL GEOLOGYDE: 8159 Rheology: crust and lithosphere;
- TECTONOPHYSICS