Detailed study of upper mantle anisotropy in the upper mantle of eastern North America
Abstract
We collected observations of core-refracted shear waves on a 1300 km long array crossing the eastern part of the North American continent from James Bay to the Fundy Basin. We combine data from the Earthscope Transportable Array, Canadian and US permanent observatories, and the recently completed Earthscope FlexArray QMIII.Past studies found ample evidence for directional dependence (anisotropy) of seismic wave speed in the upper mantle of this region. However, to date the lateral spacing of seismic observatories made direct comparisons between anisotropic structure and tectonic divisions evident on the surface challenging. With instruments spacing 50 km, and less near major tectonic boundaries such as the Grenville Front and the Appalachian Front, we can discriminate between gradual changes in anisotropic properties due to asthenospheric flow variations, and abrupt and localized changes likely to arise from juxtaposition of distinct lithospheric blocks.To insure lateral consistency of measurements we selected core-refracted shear waves that were observed over the entire length of our array. Also, since directional dependence of splitting parameters is a well recognized signature of vertical changes in anisotropic properties we examine observations from different directions, and look for systematic changes.Most locations show evidence for some degree of splitting in observed shear waves. Delays between fast and slow components estimated using rotation-correlation method range from 0.3 to 1.5 s. At most sites delay values vary considerably between individual phases measured. Fast polarizations are predominantly NE-SW, which agrees with numerous past studies of the region. Systematic directional dependence of fast polarization is seen at all sites we studied. Furthermore, the values of fast polarization appear to be similar along the entire array for individual events but vary from event to event. Both of these observations are consistent with the previously proposed notion of layered anisotropy in the upper mantle of the North American continent. We find localized changes in splitting parameters at the Grenville Front. The Appalachian Front, or the internal divisions of the Appalachian Orogen do not have obvious changes in splitting parameters associated with them.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T13C2723C
- Keywords:
-
- 1025 Composition of the mantle;
- GEOCHEMISTRYDE: 7218 Lithosphere;
- SEISMOLOGYDE: 8110 Continental tectonics: general;
- TECTONOPHYSICSDE: 8120 Dynamics of lithosphere and mantle: general;
- TECTONOPHYSICS