Expanding the 2011 Prague, OK Event Catalog: Detections, Relocations, and Stress Drop Estimates
Abstract
The Mw 5.6 earthquake occurring on 6 Nov. 2011, near Prague, OK, is thought to have been triggered by a Mw 4.8 foreshock, which was likely induced by fluid injection into local wastewater disposal wells [Keranen et al., 2013; Sumy et al., 2014]. Previous stress drop estimates for the sequence have suggested values lower than those for most Central and Eastern U.S. tectonic events of similar magnitudes [Hough, 2014; Sun & Hartzell, 2014; Sumy & Neighbors et al., 2016]. Better stress drop estimates allow more realistic assessment of seismic hazard and more effective regulation of wastewater injection. More reliable estimates of source properties may help to differentiate induced events from natural ones. Using data from local and regional networks, we perform event detections, relocations, and stress drop calculations of the Prague aftershock sequence. We use the Match & Locate method, a variation on the matched-filter method which detects events of lower magnitudes by stacking cross-correlograms from different stations [Zhang & Wen, 2013; 2015], in order to create a more complete catalog from 6 Nov to 31 Dec 2011. We then relocate the detected events using the HypoDD double-difference algorithm. Using our enhanced catalog and relocations, we examine the seismicity distribution for evidence of migration and investigate implications for triggering mechanisms. To account for path and site effects, we calculate stress drops using the Empirical Green's Function (EGF) spectral ratio method, beginning with 2730 previously relocated events. We determine whether there is a correlation between the stress drop magnitudes and the spatial and temporal distribution of events, including depth, position relative to existing faults, and proximity to injection wells. Finally, we consider the range of stress drop values and scaling with respect to event magnitudes within the context of previously published work for the Prague sequence as well as other induced and natural sequences.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.S43C2865C
- Keywords:
-
- 4475 Scaling: spatial and temporal;
- NONLINEAR GEOPHYSICSDE: 7209 Earthquake dynamics;
- SEISMOLOGYDE: 7223 Earthquake interaction;
- forecasting;
- and prediction;
- SEISMOLOGYDE: 8164 Stresses: crust and lithosphere;
- TECTONOPHYSICS