A Study on Empirical Site Response at Bodrum Peninsula, Turkey
Abstract
The Bodrum Peninsula with a population of one million in summer season is one of the most populated touristic centers of the southwest coast of Turkey. The region is located at the eastern part of the Volcanic Arc and Hellenic Arc-Trench System at the Aegean Sea. It is also surrounded by several offshore Aegean Graben systems. All of those systems have capability of producing large magnitude (M7+) earthquakes. Such tectonic entities pose a great threat to settlements around the region. Enrichment in ground motion arrays is an indispensable tool to investigate ground motion characteristics as well as behavior of shallow site profiles at such seismically active urban regions. Hence, Boğaziçi University Kandilli Observatory and Earthquake Research Institute (KOERI) Earthquake Engineering Department deployed a strong motion network at the Peninsula in June 2015. Three out of five stations (B1, B2, B3) are on an Alluvium sediment. The rests are on Limestone (B4) and Volcanic rock (B5). Soil profiles of the sites are not currently available. The network recorded more than 100 earthquakes in the last year. In the present study 15 events with magnitudes (Ml) from 3.4-5.4 occurred within 170 km epicentral distances were selected for calculation. PGA variations among stations were compared. B2 and B3 stations show consistently greater PGA values than others. Fundamental resonant frequencies of the sites were estimated by the H/V technique and relative amplifications were calculated by the Standard Spectral Ratio (SSR) technique. Based on fundamental resonant frequencies, B5 station was selected as the reference station for calculation of SSR spectra.Examining the earthquake data it was found out that (1) Predominant frequencies change between 2.0 - 3.7 Hz for soft soils, where it is 6 Hz for the reference site. The lowest frequency was observed at site B2; (2) Relative amplifications are in the range of 3 to 8. Even though B1, B2 and B3 stations rest on similar geological units, B1 gives the lowest relative amplification. It has been known that the building housing B1 station has a pile foundation and station may not be representative of free field conditions. Structural behaviors could be one of the reasons of such effect; (3) Spectral shapes obtained from SSR are similar to those obtained from H/V.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.S33D2871A
- Keywords:
-
- 7212 Earthquake ground motions and engineering seismology;
- SEISMOLOGY