Mapping Ejecta Thickness Around Small Lunar Craters
Abstract
Detailed knowledge of the distribution of ejecta around small ( 1 km) craters is still a key missing piece in our understanding of crater formation. McGetchin et al. [1] compiled data from lunar, terrestrial, and synthetic craters to generate a semi-empirical model of radial ejecta distribution. Despite the abundance of models, experiments, and previous field and remote sensing studies of this problem, images from the 0.5 m/pixel Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) [2] provides the first chance to quantify the extent and thickness of ejecta around kilometer scale lunar craters. Impacts excavate fresh (brighter) material from below the more weathered (darker) surface, forming a relatively bright ejecta blanket. Over time space weathering tends to lower the reflectance of the ejected fresh material [3] resulting in the fading of albedo signatures around craters. Relatively small impacts that excavate through the high reflectance immature ejecta of larger fresh craters provide the means of estimating ejecta thickness. These subsequent impacts may excavate material from within the high reflectance ejecta layer or from beneath that layer to the lower-reflectance mature pre-impact surface. The reflectance of the ejecta around a subsequent impact allows us to categorize it as either an upper or lower limit on the ejecta thickness at that location. The excavation depth of each crater found in the ejecta blanket is approximated by assuming a depth-to-diameter relationship relevant for lunar simple craters [4, e.g.]. Preliminary results [Figure] show that this technique is valuable for finding the radially averaged profile of the ejecta thickness and that the data are roughly consistent with the McGetchin equation. However, data from craters with asymmetric ejecta blankets are harder to interpret. [1] McGetchin et al. (1973) Earth Planet. Sci. Lett., 20, 226-236. [2] Robinson et al. (2010) Space Sci. Rev., 150, 1-4, 81-124. [3] Denevi et al. (2014) J. Geophys. Res. Planets, 119, 5, 976-997. [4] Wood and Anderson (1978), LPSC IX, 3669-3689.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P53A2172B
- Keywords:
-
- 6250 Moon;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 5455 Origin and evolution;
- PLANETARY SCIENCES: SOLID SURFACE PLANETSDE: 5470 Surface materials and properties;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS