Evolution of Titan's High-Pressure Ice layer
Abstract
Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess et al. (2012) Science, 337, 457-461. [2] Beghin et al. (2012) Icarus, 1028-1042. [3] Mitri et al. (2014) Icarus, 236, 169-177. [4] Castillo and Lunine (2010) Geophys. Res. Lett., 37, L20205. [5] Kalousova et al. (2015) Fall AGU, P31C-2078.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P33F..02S
- Keywords:
-
- 6280 Saturnian satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 6281 Titan;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 5405 Atmospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETSDE: 5443 Magnetospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS