The case of the missing vent: lessons in lava flow interpretation from Highway Flow, Craters of the Moon, Idaho
Abstract
Highway Flow, a latite lava flow at the northern edge of Craters of the Moon National Monument and Preserve in Idaho, appears to have been northward flowing on the basis of its footprint and broad morphology. In plan view, the overall morphology suggests a northward flow in a self-defined channel before finishing in a rounded terminus. Comparison with topographic maps clearly demonstrates, however, that this would require significant uphill travel. We hypothesize, based on topography, alteration, and contacts between flow lobes, that the lava flow emerged from a vent under the highest elevation in the central part of the flow. More detailed ground investigation with the Biologic Analog Science Associated with Lava Terrains (BASALT) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) projects, using Highway flow as an analog for planetary lavas, demonstrates that Highway Flow is actually two separate compound flow lobes, one that flowed mostly westward and the other southward. The western lobe has a circular footprint and is extensively broken by radial fractures. The southern lobe is elongate, with sheared margins and interior ribs perpendicular to flow direction; the ribs include crude ogives and extension cracks. The vent for Highway Flow, previously thought to be buried by North Crater or Big Crater flows to the south or transported tephra from Sunset Cone to the east, is identifiable at the approximate center of the seam between the two lobes using new high-resolution DTMs from UAV flights and alteration patterns observed in the field and via multispectral imagery. Contrasting topographic controls surrounding the vent resulted in very different morphologies for the two lobes, despite emplacement under otherwise similar conditions. These results argue in favor of using multiple datasets, rather than simply using visual orbiter imagery, to interpret lava flow emplacement features on other planetary bodies.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P33D2180H
- Keywords:
-
- 4558 Sediment transport;
- OCEANOGRAPHY: PHYSICALDE: 6281 Titan;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 6295 Venus;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 5405 Atmospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS