The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions
Abstract
Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Hecht et al., Science, Vol. 325, 2009 [2] Glavin et al., J. Geophys. Res. Planets, Vol. 118, 2013 [3] Kounaves et al., Icarus, Vol. 229, 2014 [4] Navarro-Gonzalez et al., J. Geophys. Res., 115, 2010 [5] Carrier & Kounaves, Geophys. Res. Lett., Vol. 42, 2015 [6] Quinn et al, Astrobiology, Vol. 13, 2013 [7] Peters et al., Icarus, Vol. 197, 2008.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P23A2162C
- Keywords:
-
- 6297 Instruments and techniques;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 6299 General or miscellaneous;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 5494 Instruments and techniques;
- PLANETARY SCIENCES: SOLID SURFACE PLANETSDE: 5499 General or miscellaneous;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS