Smectite Formation From Basaltic Glass in the Presence of Sulfuric Acid on Mars
Abstract
Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under neutral to alkaline conditions. These pH conditions and the presence of a CO2-rich atmosphere during the Noachian and early Hesperian should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. Recent orbital and landed missions have detected phyllosilicates co-existing with minerals that usually form under acidic conditions including jarosite and alunite. The occurrence of sulfates co-existing with phyllosilicates minerals on Mars and absences of large-scale carbonate in Noachian terrains indicate that phyllosilicate formation under sulfuric acid conditions was at least locally important. The pH effect and the nature of phyllosilicate minerals forming during acid-sulfate weathering of basalt remain unknown. We investigated formation of smectite minerals in the presence of sulfuric acid from Mars-analogue, glass-rich, basalt simulant. Hydrothermal (200º C) 14 d experiments were performed with addition of sulfuric acid of variable concentration at a pH range from 1.8 to 8.4. Sulfuric acid did not suppress smectite formation and gradual acid neutralization during basalt weathering led to montmorillonite formation at pH 3 followed by saponite at pH 4 and higher. Smectite formed through glass phase alteration and was accompanied by precipitation of calcium sulfate (anhydrite). Similar smectite and sulfate formation under acid sulfate conditions may have occurred in near-surface hydrothermal areas near magma bodies on Mars.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P23A2153P
- Keywords:
-
- 6297 Instruments and techniques;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 6299 General or miscellaneous;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 5494 Instruments and techniques;
- PLANETARY SCIENCES: SOLID SURFACE PLANETSDE: 5499 General or miscellaneous;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS