Determining Size Distribution at the Phoenix Landing Site
Abstract
Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P21B2084M
- Keywords:
-
- 3346 Planetary meteorology;
- ATMOSPHERIC PROCESSESDE: 6225 Mars;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 5405 Atmospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETSDE: 5445 Meteorology;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS