Quantifying solute spreading and mixing in rocks using 3D X-ray CT and PET imaging
Abstract
Geological structures are heterogeneous with key transport properties varying over a wide range of scales. This limits our current capability to accurately predict fluid transport in the subsurface and therefore represents a major challenge for technologies, such as the sequestration of CO2in deep reservoirs. In this project, a novel experimental approach is proposed that is at the forefront of current practices for reservoir core analysis. Conventional pulse-tracer tests are combined with the simultaneous imaging of flows, thus including X-ray CT and Positron Emission Tomography (PET), so as to obtain real-time dynamic 3D images during tracer transport. The ability to directly visualize tracer flows with such level of observational detail is key to improve our understanding on the effects of heterogeneity in natural complex systems. A set of pulse-tracer tests has been carried out using two distinct porous systems, namely an unconsolidated glass beadpack and a consolidated Ketton carbonate to quantify hydrodynamic dispersion at various Péclet numbers. Tracer spreading and mixing is investigated by analysing breakthrough curves and 2D spatial distribution at various control planes within the rock sample. The experiments with beadpacks confirm observations from earlier studies where homogeneous spatial and temporal spreading of the tracer was reported. Although various studies exist on experiments with beadpacks, only few have gathered a multidimensional data set. In that respect, the results presented here are very important to "calibrate" the system for sub-core scale (mm-scale) observations, in view of the inherent heterogeneity of rock sample at the same scale and noise that comes with images acquired from non-invasive techniques. Interestingly, results with Ketton exhibit a non-Fickian behaviour. We anticipate that the former is not only caused by the presence of sub-core scale heterogeneities, but also due to the mass transfer effects between the bulk fluid and the stagnant fluid in the micropores that represent a significant portion (50%) of the pore space. So-called capacitance (or multi-rate mass transfer, MRMT) models have been used to account for the additional mechanism that contributes to the anomalous transport.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H51D1515K
- Keywords:
-
- 1009 Geochemical modeling;
- GEOCHEMISTRYDE: 1832 Groundwater transport;
- HYDROLOGYDE: 1869 Stochastic hydrology;
- HYDROLOGY