Parameter Estimation for Geoscience Applications Using a Measure-Theoretic Approach
Abstract
Effective modeling of complex physical systems arising in the geosciences is dependent on knowing parameters which are often difficult or impossible to measure in situ. In this talk we focus on two such problems, estimating parameters for groundwater flow and contaminant transport, and estimating parameters within a coastal ocean model. The approach we will describe, proposed by collaborators D. Estep, T. Butler and others, is based on a novel stochastic inversion technique based on measure theory. In this approach, given a probability space on certain observable quantities of interest, one searches for the sets of highest probability in parameter space which give rise to these observables. When viewed as mappings between sets, the stochastic inversion problem is well-posed in certain settings, but there are computational challenges related to the set construction. We will focus the talk on estimating scalar parameters and fields in a contaminant transport setting, and in estimating bottom friction in a complicated near-shore coastal application.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H44E..07D
- Keywords:
-
- 1805 Computational hydrology;
- HYDROLOGYDE: 1819 Geographic Information Systems (GIS);
- HYDROLOGYDE: 1916 Data and information discovery;
- INFORMATICSDE: 1920 Emerging informatics technologies;
- INFORMATICS