Assessing Potential Land Suitability for Surface Irrigation using Groundwater in Ethiopia
Abstract
Although Ethiopia has large land areas that can potentially be developed for surface irrigation, only a fraction of the potential available land has been utilized. This paper presents evaluation of the potential lands in Ethiopia that are suitable for irrigation using groundwater. The suitable land was identified using GIS-based Multi-Criteria Evaluation (MCE) techniques applying a GIS model. The factors used were identified from literature and from experts in the region. Factors considered includes physical land features (land use, soil and slope), climate characteristics (rainfall and evapotranspiration), and market access (proximity to roads and access to market). Factors were weighted using a pair-wise comparison matrix, reclassified, and overlaid to identify the suitable areas for groundwater irrigation at 1 km grid. Groundwater data from the British Geological Survey were used to estimate potential groundwater availability and analyze the irrigation potential for dominant crops. Simulated output from SWAT could be used in areas where data is not available. Result indicates that approximately 6.0 million ha of land in Ethiopia is suitable for surface irrigation. A large portion of this suitable land is located in the Abbay, Rift Valley, Omo Ghibe, and Awash River basins, which all also have shallow groundwater access (< 20 m from the surface). The comparison between available groundwater and total crop water requirements indicated that current groundwater resources in the basins are not capable of irrigating all suitable land independently, but groundwater resources are a good option for supplementing current surface water resources in many regions. The study indicated that only 8 % of the suitable land could be irrigated with the groundwater within the grid.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H43A1398W
- Keywords:
-
- 1805 Computational hydrology;
- HYDROLOGYDE: 1846 Model calibration;
- HYDROLOGYDE: 1847 Modeling;
- HYDROLOGYDE: 1879 Watershed;
- HYDROLOGY