Short-interval repeat ground-based surveys of fugitive emissions from oil production facilities in the Bakken
Abstract
There has been a growing body of research focused on fugitive emissions from oil and gas production. Some studies are bottom-up, component-level studies of individual leaks, while others use atmospheric flux quantification to estimate overall leakage [1]. These studies represent static views of the emissions from a particular region or piece of equipment. There have not (as of yet) been studies examining how the leaks in a facility change over time. Also, challenges have arisen due to study designs that primarily rely on operator cooperation, raising the potential of participation bias in samples taken. This study investigates the persistence of leaking wellpads in the Bakken formation over time, utilizing ground-based observations with an optical gas imaging camera (FLIR GF320). This study examines - without operator foreknowledge - operations which are visible from public roads. This study is broken up into two phases: Phase A included seventy well pads observed over seven separate visits (15, 30, 45, 60, 75, 180, 365 days) where well sites were selected using prior observations to include a higher proportion of leaking wells than across the population overall. Phase B includes sixty-two randomly selected well pads observed over six visits (15, 30, 45, 60, 75, 180 days). This study examines the dynamics between leaking and non-leaking sites over time by comparing the observed presence (or absence) of leaks in a Monte Carlo simulation to a random leak distribution [2]. Even after 180 days, the number of well pads that persisted as either leaking or non-leaking were more than 2σ away from that expected using a random distribution of leaks. This indicates that the mitigation of previously leaking wells could have a significant impact in the reduction of fugitive emissions through enabling persistent improvements in leakage behavior. [1] D. R. Lyon et al. "Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites," Environ. Sci. Technol., p. acs.est.6b00705, Apr. 2016. [2] J. Peischl et al. "Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota," J. Geophys. Res. Atmos., May 2016.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H33I1669E
- Keywords:
-
- 1803 Anthropogenic effects;
- HYDROLOGYDE: 1878 Water/energy interactions;
- HYDROLOGYDE: 1894 Instruments and techniques: modeling;
- HYDROLOGYDE: 1895 Instruments and techniques: monitoring;
- HYDROLOGY