Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach
Abstract
Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H33H1662A
- Keywords:
-
- 1847 Modeling;
- HYDROLOGYDE: 1855 Remote sensing;
- HYDROLOGYDE: 1910 Data assimilation;
- integration and fusion;
- INFORMATICS