Subsidence Serves as an Indicator of Groundwater Arsenic Risk in the San Joaquin Valley, California
Abstract
Groundwater arsenic concentrations dominantly result from anaerobic conditions. Within aquifers, clays are typically the major hosts of solid-phase arsenic, and clay layers often have restricted oxygen supply, resulting in anaerobic conditions and the concomitant relase of arsenic to groundwater. But it is not until water is drawn from the clay layers, through over-pumping of aquifers, that arsenic enters the water supply. Due to the mechanical properties of clays, the volume of groundwater withdrawn is effectively approximated by their vertical deformation, the sum of which is expressed at the surface as subsidence. As a result, subsidence can serve as an indicator, or "early warning system", of the presence of arsenic in the pumped groundwater. In the San Joaquin Valley of California, there has been significant subsidence due to groundwater extraction from clays for nearly a century. Historical subsidence in this area has been measured with leveling surveys, GPS and extensometers, and has been reproduced in groundwater models. More recent subsidence can be measured directly using Interferometric Synthetic Aperture Radar (InSAR). We use recent (post-2007) arsenic level data from the southern portion of the San Joaquin Valley to train a random forest model. Predictors in the model include historical (pre-2002) estimates of subsidence, more recent (2007-2011) InSAR estimates of subsidence, and other predictors representing additional mechanisms that could affect arsenic levels in groundwater, such as groundwater flow, redox potential and position in the basin. We find that recent subsidence is a strong predictor of arsenic levels; historical subsidence could have some impact but is less significant. These results indicate that avoiding over-pumping of the aquifer may improve water quality over a time period on the order of 10 years. Incorporating subsidence into arsenic prediction maps can improve our ability to identify and manage areas that have a higher risk of arsenic contamination due to removal of groundwater from clays.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H33F1608S
- Keywords:
-
- 1831 Groundwater quality;
- HYDROLOGYDE: 1871 Surface water quality;
- HYDROLOGYDE: 1879 Watershed;
- HYDROLOGYDE: 1895 Instruments and techniques: monitoring;
- HYDROLOGY