Reducing Nutrient Losses with Directed Fertilization of Degraded Soils
Abstract
Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H33F1604M
- Keywords:
-
- 1831 Groundwater quality;
- HYDROLOGYDE: 1871 Surface water quality;
- HYDROLOGYDE: 1879 Watershed;
- HYDROLOGYDE: 1895 Instruments and techniques: monitoring;
- HYDROLOGY