Stream Temperature Spatial and Temporal Response to Large Dam Removal and Groundwater Pumping under Varying Climate Conditions
Abstract
We simulated the effects of large upstream dam removal and in-reach groundwater pumping on stream temperature spatial and temporal patterns in a hypothetical river basin under varying climate conditions. A MODFLOW-2000 model, with options for stream-aquifer interaction and grid-block rewetting, was constructed to simulate monthly streamflows for 12 watershed scenarios described below. For each scenario, streamflow output became input into a stream temperature simulation model. Stream temperatures were simulated using the CE-QUAL-W2 water quality model over a 110 km model grid, with the presence and removal of a dam at the top of the reach and pumping in the lower 60 km of the reach. Measured meteorological data from three locations in Oregon and California representing the three meteorological conditions were used as model input to simulate the impact of varying climate conditions on streamflows and stream temperature. For each climate condition, four hypothetical watershed scenarios were modeled: (1) natural (no dam or pumping), (2) large upstream dam present, (3) dam with in-reach pumping, and (4) no dam with pumping continued, resulting in 12 cases. If a transition from a humid to more arid environment occurs under future climate change, the simulations showed that decreased streamflow, increased solar radiation, and increased air temperatures would result in overall increased stream temperatures as expected. From March to August, the presence of a dam caused monthly mean stream temperatures to decrease on average by approximately 3.0°C, 2.5°C, and 2.0°C for the humid, semiarid, and arid conditions, respectively; however, stream temperatures generally increased from September to February. Pumping caused stream temperatures to warm in summer and cool in winter by generally less than 0.5°C. Though dam removal led to greater changes in stream temperature than pumping, ephemeral conditions were increased both temporally and spatially by pumping.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H33B1531R
- Keywords:
-
- 1630 Impacts of global change;
- GLOBAL CHANGEDE: 1632 Land cover change;
- GLOBAL CHANGEDE: 1871 Surface water quality;
- HYDROLOGYDE: 1894 Instruments and techniques: modeling;
- HYDROLOGY