Electrokinetic Enhanced Delivery and Electrical Resistance Heating Activation of Persulfate for Low Permeability Soil Remediation
Abstract
Remediation of low permeability soils is challenging because delivering remediants into these formations is difficult. Electrokinetics (EK) has been proposed as a new approach to overcome this difficulty, for example, to deliver oxidants such as persulfate into silts and clays. However, activation of the persulfate in such scenarios remains a challenge. The current study proposes a novel approach of combining (i) EK-assisted persulfate delivery with (ii) low temperature electrical resistance heating (ERH) to activate the persulfate. The advantage of this new approach that a single set of electrodes can be used for both oxidant delivery and oxidant activation in low permeability, contaminated soil. Proof-of-concept experiments were conducted in a two-dimensional sandbox packed with silt exhibiting high concentrations of aqueous phase tetrachloroethene (PCE). Results showed that (1) EK delivered the non-activated persulfate throughout the silt, (2) ERH was able to achieve and sustain the targeted temperatures to activate the persulfate, and (3) these resulted in complete PCE degradation at all locations. Activating persulfate at a temperature around 36 °C was better than at 42 °C (or higher), because the former more slowly generated the reactive SO4ˉ● radical which ensured more complete reaction with the contaminant. This study proved the concept of this novel, coupled approach for delivering and activating persulfate for remediating chlorinated solvents in low permeability soils.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H33A1509C
- Keywords:
-
- 1831 Groundwater quality;
- HYDROLOGYDE: 1832 Groundwater transport;
- HYDROLOGYDE: 1847 Modeling;
- HYDROLOGYDE: 1875 Vadose zone;
- HYDROLOGY