Cryptic flows: using multiple tracers to relate dissolved oxygen to hyporheic and groundwater flowpaths in intermittent salmonid streams
Abstract
Intermittent streams provide important habitat for aquatic species, including endangered salmonid fishes, but during prolonged dry periods may become depleted in dissolved oxygen (DO). The rate of depletion and the consequent length of time a pool remains habitable depend on DO and carbon concentrations in groundwater and hyporheic flow, and within-pool metabolic rates. We performed repeat surveys, habitat characterization, and ecohydrologic sampling on two intermittent tributaries of Salmon Creek (Sonoma Co., CA) to elucidate controls on salmonid over-summer survival at the pool scale. Pools exhibited heterogeneity within and across stream reaches in salmonid recruitment and survival during the summer dry period. In classification tree analysis, high conductivity (>310 mS/cm) and low DO (<2 ppm) were negatively associated with salmonid survival, with high pool conductivity resulting from either groundwater inflow or evapo-concentration. To distinguish between surface, hyporheic, and groundwater contributions, we measured dissolved organic carbon (DOC) concentration and fluorescence excitation-emission matrices (EEMs), radon (222Rn), and stable isotopes (18O and D) in pools, hyporheic flow, and wells and springs in local aquifers. Radon concentrations in pools ranged from 1.5-2.3 Bq/l, 3-4 orders of magnitude higher than expected for water in equilibrium with air, suggesting substantial groundwater inflow. We developed a five-component PARAFAC model from the EEMs and used with the isotope data to perform an end-member mixing analysis to track water sources and flowpaths. These analyses suggested high separability among groundwaters from aquifers separated by faults and between groundwater and surface water, with groundwater of different age and flowpath length discharging to different pools. Pools with shallow groundwater or hyporheic flow sustained DO concentrations above the threshold for salmonid survival, with shallow groundwater unexpectedly acting as a source of DO to the stream. These inflows were further essential for inhibiting stagnation and promoting reaeration across the air-water interface. These results suggest that conservation measures to promote aquifer recharge and sustain summer baseflow may be essential for maintaining salmonid populations during drought.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H23I1699W
- Keywords:
-
- 0452 Instruments and techniques;
- BIOGEOSCIENCESDE: 1813 Eco-hydrology;
- HYDROLOGYDE: 1830 Groundwater/surface water interaction;
- HYDROLOGYDE: 1860 Streamflow;
- HYDROLOGY