A Study of the Effect of Hysteresis on Transient Seepage in Levees
Abstract
The capability of modeling hysteresis in soils is not often provided in commercial 2-D finite element seepage programs. However, hysteresis can be important in the modeling process. This research shows the effect of hysteresis on transient seepage results for a generic levee common to the southeastern United States where moisture content and hydraulic conductivity curves for the unsaturated zone are modeled using van Genuchten drying curves only, wetting curves only, and hysteresis. Quantities measured are (1) a levee saturation coefficient that is zero when the river is at initial conditions and one when steady-state has been achieved at the maximum river elevation, (2) the pore pressure at the toe of the levee beneath the confining layer, and (3) flow rate through the downstream flux section. A model for switching from the wetting curve to the drying curve and visa versa for hysteresis has been implemented in a 2-D finite element program to perform the described research. The levee system is considered homogeneous in this study. The hydrograph of the river for a 20-foot levee begins at -5 ft, goes up at 1 ft/day until it reaches 17.5 ft, remains for 10 days, and then descends at 1 ft/day until the river reaches -5 ft again, giving a simulation time of 55 days. Saturated hydraulic conductivity values of 0.01, 0.001, and 0.0001 cm/sec were considered. Values of the three output variables for wetting only, drying only, and hysteresis curves for the 55 days were collected, and closeness coefficients in terms of percentages were defined and computed from the collected data. It was found that the closeness coefficient was as high as 24.61% for levee saturation coefficient, 5.15% for pore pressure, and 119.93% for flow rate. Clearly, it is important to consider hysteresis in the modeling process.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H23D1573T
- Keywords:
-
- 1813 Eco-hydrology;
- HYDROLOGYDE: 1830 Groundwater/surface water interaction;
- HYDROLOGYDE: 1843 Land/atmosphere interactions;
- HYDROLOGYDE: 1875 Vadose zone;
- HYDROLOGY