Estimation of biotransformation and sorption of emerging organic compounds (EOCs) during artificial recharge through a reactive barrier.
Abstract
The reuse of lesser quality water such as effluents from wastewater treatment plants or effluent-receiving water bodies has been promoted due to the water shortages affecting many regions of the world. Artificial recharge through infiltration basins is known to improve several water quality parameters including the attenuation of emerging organic compounds (EOCs). Many of these contaminants exhibit redox dependent biotransformation because the redox state is one of the factors controlling microbial community development. Together with biotransformation, sorption also affects the behavior of EOCs in their passage through the soil. We studied EOCs attenuation in an infiltration system is located in Sant Vicenç dells Horts on the Llobregat delta (Barcelona, Spain), where the local water agency has an artificial recharge pilot project . The Llobregat river water used for the artificial recharge is affected by treatment plant effluents which contain EOCs. A reactive barrier consisting of vegetable compost, clay, and iron oxide was installed in the bottom of the infiltration basin to enhance biotransformation and sorption of EOCs. The barrier releases dissolved organic carbon, which favors the development of a broad range of redox environments, and supplies neutral, cationic, and anionic surfaces to favor sorption of different types of contaminants. Results were excellent, but quantitative evaluation of the EOCs attenuation requires knowledge of the residence time distribution of infiltrated water. A tracer test was performed by adding tracers to the infiltration water and interpreting the breakthrough curves at diverse monitoring points with a 2D multilayer numerical model. The calibrated model quantify degradation, as a first order law, and sorption through a linear distribution coefficient for ten selected EOCs. Results indicate higher degradation rates and sorption coefficients in the reactive barrier than in the rest of the aquifer for nine and eight of the ten studied EOCs, respectively, which demonstrates the efficiency of the reactive barrier to enhance the removal of EOCs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H23C1551V
- Keywords:
-
- 0402 Agricultural systems;
- BIOGEOSCIENCESDE: 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCESDE: 1831 Groundwater quality;
- HYDROLOGYDE: 1875 Vadose zone;
- HYDROLOGY