Understanding and Seasonal Forecasting of multiscale droughts in China
Abstract
Droughts were climate anomalies that occurred naturally. But they have been altered by climate change and human interventions, and have covered a variety of spatiotemporal scales from seasonal/decadal droughts at regional to continental scales that are associated with large-scale climate anomalies and certain atmospheric circulation patterns, to flash droughts at local scales that are usually concurrent with heat extremes. Droughts have quite different implications across a number of sectors, with the considerations augmented from meteorological droughts to agricultural and hydrological droughts, where the latter could be affected by human activities directly. This raises a grand challenge to understand and predict droughts across scales in a changing environment. This presentation will be started by diagnosing an El Niño-induced meteorological drought that occurred over northern China (NC) last year, where the oceanic and atmospheric background are investigated, and the real-time prediction from Climate Forecast System version 2 (CFSv2) are diagnosed. The comparison between 2015 NC drought and other historical droughts are discussed, and a dynamical-statistical forecasting approach is being developed. Secondly, a rapidly developing agricultural drought event that termed as "flash droughts" accompanied by extreme heat, low soil moisture and high evapotranspiration (ET), occurred frequently around the world, and caused devastating impacts on crop yields and water supply. The increasing trend of flash droughts over China was tripled after the big El Niño event in 1997/98, but the warming hiatus does exist over many regions of China. The changes in flash droughts over China are being attributed by using multiple reanalysis data and the CMIP5 simulations. Lastly, the effects of human interventions on the drought propagation will be investigated over Yellow River basin in northern China. A comparison between SPI and standardized streamflow index indicates that the response of hydrological droughts to meteorological droughts becomes longer, and the duration and severity of hydrological droughts could be doubled or tripled with human interventions. The impact of human intervention on the hydrological drought predictability is being explored within the NMME/VIC forecasting framework.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H21D1432Y
- Keywords:
-
- 1812 Drought;
- HYDROLOGYDE: 1818 Evapotranspiration;
- HYDROLOGYDE: 1836 Hydrological cycles and budgets;
- HYDROLOGYDE: 1843 Land/atmosphere interactions;
- HYDROLOGY