Modeling the role of groundwater and vegetation in the hydrological response of tropical glaciated watersheds to climate change
Abstract
Climate change projections show greater rates at higher elevations, making tropical glaciated regions some of the most vulnerable hydrological systems and the earliest windows into changing conditions in mountainous watersheds. Many of the subsistence agrarian communities below Volcán Chimborazo, Ecuador, experience water stress, heightening the urgency to understand the hydrological impacts of climate change. Previous hydrochemical and physical observations suggest that a significant fraction of glacial melt may first recharge underlying groundwater before discharging to streams at lower elevations. This has important implications for tracking hydrological response to climate change, due to differences in the spatiotemporal behavior of surface water vs. groundwater. However, differentiating meltwater-sourced and precipitation-sourced groundwater throughout the watershed poses a challenge in elucidating the influence of accelerated but finite glacial melt on streamflow. In addition to glacial melt, recently noted upslope vegetation migration on Chimborazo will likely complicate future predictions of water availability by influencing the relative amounts of groundwater sources and changing discharge through altered evapotranspiration along riparian zones. To investigate the roles of groundwater pathways and vegetation on glacial melt contributions to streamflow, we implement the coupled groundwater/rainfall-runoff model GSFLOW. We infer hydrogeological model inputs from geological maps of Chimborazo and vegetation properties from a combination of remotely sensed imagery and in-situ surveys. Dynamically downscaled meteorological state variables, checked against field data, force the model. Such a model enables the quantification of the current meltwater contribution to streamflow at critical water extraction points and allows us to probe potential meltwater and water resource changes under future climate change scenarios.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H13L1590N
- Keywords:
-
- 0740 Snowmelt;
- CRYOSPHEREDE: 1621 Cryospheric change;
- GLOBAL CHANGEDE: 1813 Eco-hydrology;
- HYDROLOGYDE: 1817 Extreme events;
- HYDROLOGY