Energy balance and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard
Abstract
Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.
Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.C53D0773K
- Keywords:
-
- 0720 Glaciers;
- CRYOSPHEREDE: 0762 Mass balance 0764 Energy balance;
- CRYOSPHEREDE: 0776 Glaciology;
- CRYOSPHEREDE: 0798 Modeling;
- CRYOSPHERE