Optical Sensing of Ecosystem Carbon Fluxes from Tower-mounted Spectrometers
Abstract
Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. To fully understand these measurements requires descriptions of temporal and bidirectional variability. The NASA FUSION tower-mounted system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. This comprehensive tower measurement dataset can provide insights into interpretation of satellite or aircraft observations. Data were collected in the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) cornfields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center in conjunction with CO2 eddy covariance fluxes throughout the growing season. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. We find significant bidirectional effects. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B54A..08H
- Keywords:
-
- 0402 Agricultural systems;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCESDE: 0480 Remote sensing;
- BIOGEOSCIENCES