Tipping a SPRUCE tree over - how extreme heat and desiccation may push southern boreal species beyond their capacity
Abstract
Since August 2015, the Spruce and Peatland Responses under Climatic and Environmental Change (SPRUCE) climate change experiment (http://mnspruce.ornl.gov/) in Northern Minnesota, USA, has exposed 13 m diameter plots of an ombrotrophic Picea mariana - Ericaceous shrub - Sphagnum bog ecosystem to long-term temperature (T) (0 to +9 °C) and since June 2016, elevated CO2 treatments (ambient or + 500 ppm). In addition to their direct impacts, the T and CO2 treatments have dramatically impacted soil water availability, vapor pressure deficit and # days dew point is reached. We examined plant water relations of Picea mariana (black spruce), Larix laricina (tamarack), and several Ericaceous shrubs including seasonal patterns of water potential (ψ), in addition to sap flow in the in trees. Granier-style thermal dissipation sensors were calibrated in situ (outside plots) by cutting instrumented trees and measuring their actual water uptake. Maximum summer T in N Minnesota reaches 35 °C, and optimal photosynthetic activity for P. mariana at the site peaks between 35-38°C. Treatments have resulted in air T reaching 45°C in the warmest plots resulting in substantial physiological stress. Pretreatment sap flow typically began by late May and was fairly constant over the season until declining in mid-September and ceasing as temperatures dropped below zero. Once the T treatments began, sap flow began earlier in the spring and continued later in the fall indicating an expanded physiological season that can result in plant vulnerability to extreme cold events. Indeed, foliar damage was evident in warmer plots following a spring freeze event in 2016. In addition, the drying heat has resulted in additional foliar damage, indicated by large reductions in predawn water potentials (even in the spring), quicker drying following rain events, and water stress reached earlier in the day. Midday mean summer ψ was -1.5 MPa for P. mariana foliage, higher than the co-occurring L. laricina (-2.0 MPa), but lower than shrubs (-1.1 MPa). Based on hydraulic measurements of excised tissue, P. mariana foliage remained higher that its turgor loss point (TLP), while midday L. laricina foliage often reached its TLP. Initial results indicate the potential for shifts in community composition due to differential heat and water stress among the species.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B41G0520W
- Keywords:
-
- 0456 Life in extreme environments;
- BIOGEOSCIENCESDE: 1605 Abrupt/rapid climate change;
- GLOBAL CHANGEDE: 1812 Drought;
- HYDROLOGYDE: 4313 Extreme events;
- NATURAL HAZARDS