The carbon cycle implications of chemical weathering in retrogressive thaw slump-impacted streams
Abstract
Permafrost thaw is "unlocking" and exposing significant amounts of sediment, solutes and organic carbon previously maintained in frozen soils to biochemical processing and fluvial transport. While microbial respiration of permafrost organic carbon contributes significantly to CO2 in Arctic headwater streams, chemical weathering of minerals unearthed by thawing permafrost may fix CO2 as bicarbonate (HCO3), thus removing it from the active carbon cycle. However, the degree to which mineral weathering acts to temper CO2 generated during permafrost thaw is largely unknown. During summer 2015, we investigated these dynamics in eight streams (orders 1-3) impacted by retrogressive thaw slumps across the Peel Plateau (NT, Canada), where thaw slumps expose permafrost that is comprised of abundant glacial tills, and glaciofluvial and glaciolacustrine sediments. Thaw slump activity had a discernible signature in all streams: conductivity, pH, dissolved inorgnaic carbon (DIC), and solute concentrations (Ca, Mg, Na, K, SO4, Cl) increased in the downstream (thaw slump-impacted) reach, relative to upstream, while CO2 decreased. This corresponded with an isotopically-enriched DIC pool in impacted streams (mean δ13CDIC = -9.80‰), perhaps indicating the dissolution of carbonate minerals following exposure by thaw slump activity. Despite a general decrease downstream of thaw slumps, CO2 remained supersaturated in impacted streams (mean pCO2 = 915 µatm). However, the highest partial pressures of CO2 were found in thaw slump runoff (mean pCO2 = 4,600 µatm), above the point where runoff entered downstream systems. High pCO2 levels in slump runoff may be derived from microbial respiration of slump-released dissolved organic carbon or, for some slumps, carbonate dissolution (range δ13CDIC = 0.67 - -23.37‰). While this work suggests thaw slumps in the Western Canadian Arctic may act to partially temper CO2 in headwater streams, these stream networks will likely persist as significant sources of CO2 to the atmosphere.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B41C0441Z
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCESDE: 0475 Permafrost;
- cryosphere;
- and high-latitude processes;
- BIOGEOSCIENCES