Response of an Alpine Tundra in the Southern Rocky Mountains to Climate Change by 2100: Projections of Water, Carbon, and Nitrogen Cycling under RCP 4.5 and RCP 8.5 Scenarios
Abstract
Biogeochemical cycling of water, carbon, and nitrogen in alpine tundra ecosystems are closely related to the water and nutrient supply and ecosystem function of watersheds. While studies on the response of alpine tundra to climate change have largely focused on ecosystem structure, research on response of ecosystem function and element cycling are less well established. Using downscaled future climate scenarios under Representative Concentration Pathways (RCP) and revised algorithm of the ecosystem model, PnET-BGC, we investigated water, carbon, and nitrogen cycling of an alpine tundra ecosystem under different projections of future climate change at Saddle site of Niwot Ridge, Colorado. Simulations from this study suggest that future water supply from the alpine tundra was well predicted by the Budyko curve, which contrasts with findings from several previous studies. Although foliar display is projected to decrease due to summer water stress, an extend growing season and increasing atmospheric CO2 concentrations reverse its effects on carbon fixation by allowing longer period of photosynthesis and greater photosynthetic rate per leaf area. As a result of the increasing carbon sequestration, large increases in carbon storage are projected in living and dead biomass. Decomposition of soil organic carbon and mineralization of soil organic nitrogen increase with temperature and soil moisture, but also related to the period of snow cover which likely enhances microbial activity and associated soil decomposition and N immobilization. Future increase in winter precipitation leads to increasing snow water content which increases spring soil moisture and decomposition. Shorter future snow cover period and decreased summer soil moisture caused lower decomposition in both seasons, therefore negligible long-term pattern is projected. Future net N mineralization generally followed the pattern of organic carbon decomposition, but slightly increased because of decreasing winter immobilization due to projected shorter snow cover period. Nitrogen uptake is projected to be higher under radiative forcing scenarios of higher primary production and greater net N mineralization.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B41C0440D
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCESDE: 0475 Permafrost;
- cryosphere;
- and high-latitude processes;
- BIOGEOSCIENCES