Upscaling nitrogen-mycorrhizal effects to quantify CO2 fertilization.
Abstract
Terrestrial ecosystems sequester annually about a quarter of anthropogenic carbon dioxide (CO2) emissions. However, it has been proposed that nitrogen (N) availability will limit plants' capacity to absorb increasing quantities of CO2 in the atmosphere. Experiments in which plants are fumigated with elevated CO2 show contrasting results, leaving open the debate of whether the magnitude of the CO2 fertilization effect will be limited by N. By synthesizing data from CO2 experiments through meta-analysis, we found that the magnitude of the CO2 fertilization effect can be explained based on the interaction between N availability and type of mycorrhizal association. Indeed, N availability is the most important driver of the CO2 fertilization effect, however, plants that associate with ectomycorrhizal fungi can overcome N limitations and grow about 30% more under 650ppm than under 400ppm of atmospheric CO2. On the other hand, plants that associate with arbuscular mycorrhizal fungi show no CO2 fertilization effect under low N availability. Using this framework, we quantified biomass responses to CO2 as a function of the soil parameters that determine N availability for the two mycorrhizal types. Then, by overlaying the distribution of mycorrhizal plants with global projections of the soil parameters that determine N availability, we estimated the amount of extra CO2 that terrestrial plants can sequester in biomass for an increase in CO2, as well as the distribution of the CO2 fertilization effect. This synthesis reconciles contrasting views of the role of N in terrestrial carbon uptake and emphasizes the plant control on N availability through interaction with ectomycorrhizal fungi. Large-scale ecosystem models should account for the influence of nitrogen and mycorrhizae reported here, which will improve representation of the CO2 fertilization effect, critical for projecting ecosystem responses and feedbacks to climate change.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B34B..07T
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCESDE: 0486 Soils/pedology;
- BIOGEOSCIENCES