Synergetic use of Sentinel-1 and 2 to improve agro-hydrological modeling. Results of groundwater pumping estimates in south-India and nitrogen excess in south-west of France
Abstract
Nitrogen transfers at agricultural catchment level are intricately linked to water transfers. Agro-hydrological modeling approaches aim at integrating spatial heterogeneity of catchment physical properties together with agricultural practices to spatially estimate the water and nitrogen cycles. As in hydrology, the calibration schemes are designed to optimize the performance of the temporal dynamics and biases in model simulations, while ignoring the simulated spatial pattern. Yet, crop uses, i.e. transpiration and nitrogen exported by harvest, are the main fluxes at the catchment scale, highly variable in space and time. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to reset soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model. This study takes two agro-hydrological contexts as demonstrators: 1-spatial nitrogen excess estimation in south-west of France, and 2-groundwater extraction for rice irrigation in south-India. Spatio-temporal patterns are involved in respectively surface water contamination due to over-fertilization and local groundwater shortages due to over-pumping for above rice inundation. Optimized Leaf Area Index profiles are simulated at the satellite images pixel level using an agro-hydrological model to reproduce spatial and temporal crop growth dynamics in south-west of France, improving the in-stream nitrogen fluxes by 12%. Accurate detection of irrigated area extents are obtained with the thresholding method based on optical indices, with a kappa of 0.81 for the dry season 2016. The actual monsoon season is monitored and will be presented. These extents drive the groundwater pumping and are highly variable in time (from 2 to 8% of the total area).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B33C0626F
- Keywords:
-
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSESDE: 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0469 Nitrogen cycling;
- BIOGEOSCIENCES