Temporal Variations of the Atmospheric CO2 Concentration and Its Carbon Isotope Ratio at Ny-Ålesund, Svalbard and Estimation of Global Carbon Budget
Abstract
Long-term measurements of the atmospheric CO2 concentration and its carbon isotope ratio (δ13C) are useful for partitioning anthropogenic CO2 into the terrestrial biosphere and the ocean, if the carbon isotopic disequilibrium flux (so-called isoflux), combining terrestrial and oceanic contributions, is quantified. For a better understanding of the global carbon cycle, we have carried out the systematic observation of the atmospheric CO2 concentration and δ13C at Ny-Ålesund, Svalbard (78.93°N, 11.83°E) since 1991. Air samples were collected into stainless-steel flasks at the Japanese observatory in Ny-Ålesund, once a week and sent to NIPR every two months. CO2 concentrations of the air samples were determined by using a NDIR analyzer, and CO2 samples extracted cryogenically from the remaining air in the flasks were analyzed for δ13C using a mass spectrometer. Analytical precisions for CO2 and δ13C were 0.01 ppm and 0.02 ‰, respectively. The CO2 concentration shows a clear seasonal cycle with peak-to-peak amplitude of about 17 ppm, which reaches a maximum in late April to early May and a minimum in late August, superimposed on a secular increase with an average rate of 2.0 ppm/yr for the period of 1996-2013. On the other hand, the δ13C decreases secularly at an average rate of -0.018 ‰/yr, and varies seasonally in opposite phase with the CO2 concentration. By analyzing the CO2 concentration and δ13C using the isoflux calculated with a box-diffusion model, the terrestrial biospheric and oceanic CO2 sinks are estimated to be 1.5 ± 0.3 and 2.4 ± 0.4 GtC/yr, respectively, for the 13-year period (2001-2013). On the other hand, the secular trends of the atmospheric δ(O2/N2) and CO2 concentration at Ny-Ålesund (Ishidoya et al., 2012) yield the respective sink values of 1.7 ± 0.8 and 2.2 ± 0.7 GtC/yr for the same period. The estimates from the two methods are in good agreement with each other.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B33C0606G
- Keywords:
-
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSESDE: 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 0469 Nitrogen cycling;
- BIOGEOSCIENCES