Profiling Hyporheic Microbial Community Nitrogen Cycle and Carbohydrate Active Enzyme Gene Abundances across Seasons
Abstract
The hyporheic zone (HZ) is the permanently inundated sediment layer between a surface channel and adjacent groundwater-saturated sediments. It has been hypothesized to play a major role in macronutrient (C, N, P) cycling in rivers. The correlation between community taxonomic composition dynamics and functional gene representation is poorly understood for hyporheic communities. To explore how microbial communities respond to temporal changes in environmental conditions, metagenomes were derived from communities captured in sterile sandpacks deployed within the HZ of the Columbia River. HMM databases were used to enumerate protein families present. Functional classification of reads allowed a general assessment of community function over time, while targeted assembly of specific genes enabled investigation of the diversity of organisms encoding these functions. Preliminary analysis of nitrogen cycle pathways shows most gene families examined to have quite steady representation across seasons, with most observed changes being less than an order of magnitude. Analysis of ammonia oxidation genes showed bacterial ammonia oxidizers (AOB) to be stably present across the year, while the archaeal amoA gene increased in late summer, peaking sharply in November, mirroring results from 16S rRNA amplicon analysis which showed an increase in Thaumarcheal OTUs during that same period. Most glycosyl hydrolase GH families had low representation. Highly abundant classes of GH included the GH94 (beta-glucosidase), GH95 (1-2-alpha-L-fucosidase) and GH103 (lytic transglycosylase) families, suggesting activity on plant, fungus and insect polysaccharides and peptidoglycans. Further work is investigating the taxonomy of the sequences identified, to determine how changes in the community composition contribute to the stable gene family profiles observed. These results are intended to work towards a greater understanding of the role of species diversity and functional redundancy in the dynamics of community composition in response to changes in environmental conditions and stochastic processes. In addition, it will serve as a foundation enabling modeling of generalized microbial function in the hyporheic zone, improving our ability to predict fluxes of carbon and nitrogen through riverine systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B31H0574N
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0452 Instruments and techniques;
- BIOGEOSCIENCESDE: 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCESDE: 1830 Groundwater/surface water interaction;
- HYDROLOGY