Uncertainties in detecting decadal change in extractable soil elements in Northern Forests
Abstract
Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify elemental change by carefully described genetic horizons is an appropriate method of detecting soil temporal change in this region. Sample size and design considerations from this project will have direct implications for future monitoring programs to characterize change in soil chemistry.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B13E0674B
- Keywords:
-
- 0430 Computational methods and data processing;
- BIOGEOSCIENCESDE: 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCESDE: 0452 Instruments and techniques;
- BIOGEOSCIENCESDE: 0466 Modeling;
- BIOGEOSCIENCES