The Soil Microbial Response to a Massive Natural Gas Leak
Abstract
The 2015/2016 gas leak in the Porter Ranch community (Southern California) was the largest natural gas leak in US history. While considerable attention has focused on the amount of methane released to the atmosphere and the effects of other gas components on human well-being, less attention has been given to the response of soil microbes to this event. These microbes represent natural pathways for utilization of C1 compounds in soils and, possibly, untapped potential to remediate natural and anthropogenic gas emissions. We monitored onsite and background soil methane concentrations and microbial communities during and following the Porter Ranch gas leak. Soil core samples (25cm depth, collected twice monthly beginning in January 2016) were preserved for DNA, RNA, microscopic, stable isotope probing, and chromatographic methods. Simultaneously to coring, gas from soil pore spaces was collected for cavity ringdown spectroscopy to measure carbon dioxide, methane and ethane concentrations, and estimate corresponding isotopic values in carbon dioxide and methane. By pairing these measurements with high throughput sequencing, transcript analysis, and cultivation, we demonstrate discrete shifts in the total microbial community in surface (0 - 5 cm) and deep (20 - 25 cm) soils. Importantly, we find that methane consumption likely occurred in surface soils during and following the leak. The lineages most significantly correlated with elevated methane from the leak event were five orders of magnitude more abundant near the leak event in space and time, indicating a microbial bloom. These lineages are previously unrecognized members of Sphingomonadaceae, and they encode at least two biochemical pathways for methane oxidation. Cultivation of the first representative of this group now allows more detailed investigation into its capacity for microbially-mediated soil methane oxidation and mitigation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B13D0646T
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCESDE: 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCESDE: 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCES