Towards optimized methods to study viral impacts on soil microbial carbon cycling
Abstract
Permafrost contains 50% of global soil carbon and is rapidly thawing. While the fate of this carbon is currently unknown, it will undoubtedly be shaped by microbes and their associated viruses, which modulate host activities via mortality and metabolic control. However, little is known about soil viruses generally and their impact on terrestrial biogeochemistry; this is partially due to the presence of inhibitory substances (e.g. humic acids) in soils that interfere with sample processing and sequence-based metagenomics surveys. To address this problem, we examined viral populations in three different peat soils along a permafrost thaw gradient. These samples yielded low viral DNA recoveries, and shallow metagenomic sequencing, but still resulted in the recovery of 40 viral genome fragments. Genome- and network-based classification suggested that these new references represented 11 viral clusters, and ecological patterns (based upon non-redundant fragment recruitment) showed that viral populations were distinct in each habitat. Although only 31% of the genes could be functionally classified, pairwise genome comparisons classified 63% of the viruses taxonomically. Additionally, comparison of the 40 viral genome fragments to 53 previously recovered fragments from the same site showed no overlap, suggesting only a small portion of the resident viral community has been sampled. A follow-up experiment was performed to remove more humics during extraction and thereby obtain better viral metagenomes. Three DNA extraction protocols were tested (CTAB, PowerSoil, and Wizard columns) and the DNA was further purified with an AMPure clean-up. The PowerSoil kit maximized DNA yield (3x CTAB and 6x Wizard), and yielded the purest DNA (based on NanoDrop 260:230 ratio). Given the important roles of viruses in biogeochemical cycles in better-studied systems, further research and humic-removal optimization on these thawing permafrost-associated viral communities is needed to clarify their involvement in carbon cycle feedbacks.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B13D0606T
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCESDE: 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCESDE: 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCESDE: 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCES