Fire suppression has led to greater drought-sensitivity in dry conifer forests: tree-ring carbon isotope evidence from Central Oregon
Abstract
Mortality events of economically and ecologically important conifers have been widespread across Western North America over recent decades. Many of these events have been linked to "global change-type droughts" characterized by greater temperatures and evaporative demand. In parallel, since the early to mid- 20th century, increasing atmospheric [CO2] has been shown to increase the water use efficiency (WUE) of trees worldwide while conifer forests in western North America have become denser after the advent of modern fire suppression efforts. Therefore, competing hypotheses include that conifer forests have experienced 1) less drought stress due to water savings from increased WUE, 2) more drought stress due to increased demand for water in dense forests with greater leaf area index, or 3) unchanging stress because these two factors have cancelled each other out. To provide a test of these hypotheses we used inter-annual latewood carbon isotope discrimination, Δ13C, across a dry mixed-conifer forest landscape of central Oregon in the rain shadow of the Cascade Mountains. The forests are dominated by old-growth ponderosa pines (Pinus ponderosa) and younger and fire-intolerant grand firs (Abies grandis). Dendrochronological dating of tree establishment and fires scars established sharp declines in fire frequency and associated increases in the densities of grand fir since the early 1900s. Δ13C data for ponderosa pine and grand fir spanned 1830-2013 and 1900-2013, respectively. For our analyses these years were split into periods of high fire frequency (1830-1900), moderate fire frequency (1901-1956) and fire-exclusion (1957-2013). Comparisons of Δ13C to reconstructed Palmer Drought Severity Index values for the same years revealed that leaf gas exchange of both species has been more sensitive to drought during the recent fire-exclusion period compared to previous periods when surface fires kept tree densities much lower. Similar research is needed elsewhere to provide additional tests. However, this initial evidence suggests that despite CO2-driven increases in WUE, conifer forests in western North America have experienced greater drought stress and been made more susceptible to mortality events due to progressive increases in tree densities and competition for water over the past century.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B11B0447V
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 1813 Eco-hydrology;
- HYDROLOGYDE: 1818 Evapotranspiration;
- HYDROLOGY