Plant hydraulic strategies and their variability at high latitudes: insights from a southern Canadian boreal forest site
Abstract
Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and intra-specific variability in plant hydraulic functioning in high-latitude ecosystems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.B11B0446P
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCESDE: 0428 Carbon cycling;
- BIOGEOSCIENCESDE: 1813 Eco-hydrology;
- HYDROLOGYDE: 1818 Evapotranspiration;
- HYDROLOGY