Connections between the tropical Pacific Ocean, Arctic sea ice, and anomalous northeastern Pacific ridging
Abstract
The ongoing and severe drought in California is linked to the multi-year persistence of anomalously strong ridging along the west coast of North America, which has deflected the Pacific storm track north of its climatological mean position. Recent work has shown that that highly amplified and strongly meridional atmospheric flow patterns in this region similar to the "Ridiculously Resilient Ridge" have become more common in recent decades. Previous investigations have suggested multiple possible contributors to this conspicuous atmospheric anomaly—including remote teleconnections to unusual tropical Pacific Ocean warmth and/or reduced Arctic sea ice, internal (natural) atmospheric variability, and anthropogenic forcing due to greenhouse gas emissions. Here, we explore observed relationships between mid-tropospheric atmospheric structure in this region and five hypothesized surface forcings: sea ice extent in the (1) Barents/Kara and (2) Beaufort/Chukchi regions, and sea surface temperatures in the (3) extratropical northeastern Pacific Ocean, (4) western tropical Pacific Ocean, and (5) eastern tropical Pacific Ocean. Using a predictive model based upon these observed relationships, we also investigate whether the failure of the powerful 2015-2016 El Niño event to bring above-average precipitation to California could have been predicted based upon these teleconnections.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A53B0279S
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSESDE: 3339 Ocean/atmosphere interactions;
- ATMOSPHERIC PROCESSESDE: 3364 Synoptic-scale meteorology;
- ATMOSPHERIC PROCESSESDE: 1621 Cryospheric change;
- GLOBAL CHANGE