Analyzing Multidecadal Trends in Cloudiness Over the Subtropical Andes Mountains of South America Using a Regional Climate Model.
Abstract
Satellite-based products indicate that many parts of South America have been experiencing increases in outgoing longwave radiation (OLR) and corresponding decreases in cloudiness over the last few decades, with the strongest trends occurring in the subtropical Andes Mountains - an area that is highly vulnerable to climate change due to its reliance on glacial melt for dry-season runoff. Changes in cloudiness may be contributing to increases in atmospheric temperature, thereby raising the freezing level height (FLH) - a critical geophysical parameter. Yet these trends are only partially captured in reanalysis products, while AMIP climate models generally show no significant trend in OLR over this timeframe, making it difficult to determine the underlying drivers. Therefore, controlled numerical experiments with a regional climate model are performed in order to investigate drivers of the observed OLR and cloudiness trends. The Weather Research and Forecasting model (WRF) is used here because it offers several advantages over global models, including higher resolution - a critical asset in areas of complex topography - as well as flexible physics, parameterization, and data assimilation capabilities. It is likely that changes in the mean states and meridional gradients of SSTs in the Pacific and Atlantic oceans are driving regional trends in clouds. A series of lower boundary manipulations are performed with WRF to determine to what extent changes in SSTs influence regional OLR.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A51I0196Z
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSESDE: 3355 Regional modeling;
- ATMOSPHERIC PROCESSESDE: 1622 Earth system modeling;
- GLOBAL CHANGEDE: 1637 Regional climate change;
- GLOBAL CHANGE