Analysis of the 2015-16 El Niño Event Using NASA's GEOS Data Assimilation System
Abstract
The strong El Niño event that occurred in 2015/2016 is analyzed using atmospheric and oceanic analyses produced using the Goddard Earth Observing System (GEOS) systems. A theme of the work is to compare and contrast this event with two other strong El Niños, in 1982/1983 and 1997/1998, that are included in the satellite-data era of the MERRA and MERRA-2 reanalyses produced using the GEOS system. Distribution of the maximum anomalies of tropical sea-surface temperature (SST), precipitation, Walker circulation, and cloud fraction indicate that 2015/2016 is a Central Pacific (CP) El Niño. The event had an early onset compared to the 1997/1998 El Niño, with extremely strong warming and precipitation over the Central Pacific, and was the strongest in terms of central Pacific SST anomalies. The large region of warm temperature anomalies over most of the Pacific and Indian Ocean in the 2015-2016 event were due to the accumulative impacts of the El Niño event along with a positive phase of the Pacific Decadal Oscillation and a decadal warming trend over the western Pacific, Maritime Continent, and Indian Ocean. The relatively weak development of the 2015/2016 El Niño event over the Eastern Pacific was likely due to weaker westerly wind bursts and Madden-Julian Oscillation during spring, which in 1997/1998 served to drive the warm anomalies further East towards South America, making that event the strongest Eastern Pacific El Niño (in the recent data record). This is reflected in the 2015/2016 event having a shallower thermocline over the Eastern Pacific, with a weaker zonal gradient of sub-surface water temperatures along the equatorial Pacific. The major extra-tropical teleconnections associated with the El Niño in 2015/2016 are at least comparable to those in the 1982/1983 and 1997/1998 El Niño events. Specifically, the Pacific North American (PNA) teleconnection in 2015/2016 is the strongest of these three El Niño events, leading to larger extra-tropical anomalies of geopotential height, temperature, and precipitation over North America.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A43C0224P
- Keywords:
-
- 3339 Ocean/atmosphere interactions;
- ATMOSPHERIC PROCESSESDE: 3373 Tropical dynamics;
- ATMOSPHERIC PROCESSESDE: 4215 Climate and interannual variability;
- OCEANOGRAPHY: GENERALDE: 4522 ENSO;
- OCEANOGRAPHY: PHYSICAL