Ultra-Parameterized CAM: Progress Towards Low-Cloud Permitting Superparameterization
Abstract
A leading source of uncertainty in climate feedback arises from the representation of low clouds, which are not resolved but depend on small-scale physical processes (e.g. entrainment, boundary layer turbulence) that are heavily parameterized. We show results from recent attempts to achieve an explicit representation of low clouds by pushing the computational limits of cloud superparameterization to resolve boundary-layer eddy scales relevant to marine stratocumulus (250m horizontal and 20m vertical length scales). This extreme configuration is called "ultraparameterization". Effects of varying horizontal vs. vertical resolution are analyzed in the context of altered constraints on the turbulent kinetic energy statistics of the marine boundary layer. We show that 250m embedded horizontal resolution leads to a more realistic boundary layer vertical structure, but also to an unrealistic cloud pulsation that cannibalizes time mean LWP. We explore the hypothesis that feedbacks involving horizontal advection (not typically encountered in offline LES that neglect this degree of freedom) may conspire to produce such effects and present strategies to compensate. The results are relevant to understanding the emergent behavior of quasi-resolved low cloud decks in a multi-scale modeling framework within a previously unencountered grey zone of better resolved boundary-layer turbulence.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A43B0199P
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSESDE: 3307 Boundary layer processes;
- ATMOSPHERIC PROCESSESDE: 3310 Clouds and cloud feedbacks;
- ATMOSPHERIC PROCESSESDE: 3311 Clouds and aerosols;
- ATMOSPHERIC PROCESSES