Level of Neutral Buoyancy, Deep Convective Outflow, and Hot Tower: New Perspectives Based on the A-Train Observations
Abstract
Deep convective cores, or "hot towers (HTs)", play a significant role in controlling the energy budgets and hydrological cycles. The vertical convective transport by HTs is like an express elevator transporting the near-surface air directly into the upper troposphere or lower stratosphere (e.g., Riehl and Malkus, 1958; Sun and Lindzen, 1993; Soden and Fu, 1995). The vertical convective transport will eventually make a transition to horizontal outflows where widespread cirrus anvils develop, which also play an important role in radiative-convective feedbacks (e.g., Stephens et al. 2008). In this study, we introduce two proxies to evaluate the strength of vertical and horizontal convective mass transport by hot towers. Result shows that HTs tend to have wider horizontal mass transport over land than ocean. In addition, an important aspect of the deep convection-to-outflow transition is the altitude where the outflow occurs, which can be conveniently summarized into a single parameter called level of neutral buoyancy (LNB). LNB is a critical parameter for understanding convection because it sets the potential vertical extent for convective development. This study develops a deeper and more comprehensive understanding of the relationship between LNB and deep convective outflow, including regional variations. To this end, a useful proxy to estimate convective dilution is introduced. Results show that active convective dilution can be seen over the Warm Pool throughout the year, while deep convection over tropical Africa and Amazonia tends to be less diluted.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A41C0061T
- Keywords:
-
- 3310 Clouds and cloud feedbacks;
- ATMOSPHERIC PROCESSESDE: 3314 Convective processes;
- ATMOSPHERIC PROCESSES