A study of photochemical againg of ambient air using Potential Aerosol Mass (PAM) chamber under the different sources and types of emissions
Abstract
Recent research proposed that Secondary Aerosol (SA) is important class of predicting future climate change scenarios, health effect, and a general air quality. However, there has been lack of studies to investigate SA formation all over the world. This study tried to focus on understanding potential secondary aerosol formation and its local impact by the photochemical aging of inorganic and organic aerosols in the ambient air using the Potential Aerosol Mass (PAM) chamber under the different sources and types of emissions. PAM chamber manufactured by Aerodyne make an oxidizing environment that simulates oxidation processes on timescales of 12-15 hrs in the atmosphere. Chemical compositions of ambient aerosol and aerosol that was aged in the PAM chamber were alternately measured every 2-minutes using the High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS). HR-ToF-AMS provides non-refractory aerosol mass concentrations including nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol in real time. This study includes a residence area of mixture of sources, a forest site of dominant source of biogenic VOCs, an underground parking lot of dominant vehicle emission, and laboratory experiment of vehicle emissions under different fuels and speeds using the chassis dynamometer. As a result, it was revealed that gasoline and LPG vehicle relatively made more potential SA than diesel vehicle.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A33H0348L
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0317 Chemical kinetic and photochemical properties;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE