Aerosol-Phase Production of Nitrogen-Containing Oligomers After Uptake of Methylglyoxal and Cloud Processing
Abstract
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A33H0335D
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0317 Chemical kinetic and photochemical properties;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE