Pressure- and Temperature-Dependent Branching Ratios of the OH + NO2 Reaction
Abstract
The reaction of OH and NO2 to form nitric acid, HONO2, is critical in atmospheric chemistry, as nitric acid is an unreactive reservoir species and thus serves as a sink of both HOx and NOx. This chain termination step plays a key role in ozone formation in polluted air and the nonlinearities that lead to the Weekend Effect. Complicating our understanding of this reaction, however, is the fact that OH and NO2 can also react to form peroxynitrous acid, HOONO, which in the troposphere quickly dissociates back to OH and NO2, regenerating these key species. Experimental rate measurements measure only total loss, but the HOONO/HONO2 branching ratio must be known to establish the net chain termination rate. The temperature dependence of this branching ratio is one of the largest errors in current atmospheric models, leading to significant uncertainty in predictions of HOx, NOx, HONO2 and ozone throughout the atmosphere and inhibiting our ability to reduce atmospheric pollution. We have previously used pulsed laser photolysis cavity ringdown spectroscopy (PLP-CRDS) in the mid-infrared (3200 - 3750 cm-1) to detect HONO2 and HOONO via their OH stretch, and have measured the branching ratio at room temperature between 25 and 760 Torr. In this work, we extend our previous results to determine the pressure dependent branching ratio over a range of tropospherically relevant temperatures (250 - 350 K) and pressures (50 - 700 Torr). Our results quantify how the branching ratio of changes with temperature, and provides a greatly needed input for atmospheric models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A33E0275M
- Keywords:
-
- 0317 Chemical kinetic and photochemical properties;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0340 Middle atmosphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0394 Instruments and techniques;
- ATMOSPHERIC COMPOSITION AND STRUCTURE