Role of Biomass Burning in the Formation of Tropospheric Ozone Laminae
Abstract
Laminar structure in free-tropospheric ozone profiles is a feature that is frequently observed in ozonesonde and lidar observations. Origins of these features are not well understood and have been linked to tropopause folding, stratospheric warming events and biomass burning emissions. Ozone laminae events with maximum ozone exceeding 80 ppb have been observed by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, Alabama. While many of the events are linked to tropopause folding, a subset of events located in the mid troposphere (2-6km) coincided with a smoke layer are associated with biomass burning. Satellite observations show the smoke originated from northwestern US wildfire events. Several of these ozone laminae associated with smoke have ozone excess of 20 ppb above the background values and have the potential to impact surface air quality if they enter the boundary layer. This presentation will report on process studies of ozone laminae associated with biomass burning plumes using A-Train satellite, ground based DIAL and ozonesonde observations. Fate and transport of the feature is also examined using WRFChem simulations, in specific transport into the boundary layer and impact on air quality at the surface.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A11M0191N
- Keywords:
-
- 0345 Pollution: urban and regional;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0368 Troposphere: constituent transport and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 3323 Large eddy simulation;
- ATMOSPHERIC PROCESSES