Impacts of New Particle Formation on Midwestern Climate and Air Quality as Determined by the NPF-explicit WRF-Chem
Abstract
A one month simulation has been performed using the New particle formation (NPF)-explicit WRF-Chem (Matsui et al, Journal of Geophysical Research, 116(D19208), 2011). The simulation was run for a domain of the continental United States, with analysis focused on the Midwestern and eastern portions of the U.S. Analysis focused on quantification and explanation of planetary boundary layer (PBL) NPF in the model on variables beyond condensation nuclei (CN), cloud condensation nuclei (CCN), and cloud droplet size distributions. The model was evaluated against meteorology, chemical species and aerosol physical property observations. Comparison shows the model performance was comparable to that of other studies. Nucleation enhanced the concentration of condensation nuclei (CN). Cloud condensation nuclei (CCN) concentrations were enhanced and suppressed at high and low supersaturations, respectively. For air pollutants, the most pronounced influence of PBL nucleation was PM2.5 reduction, which was mainly caused by SO4 decreases (62.7%). For shortwave radiation, changes due to indirect effects of NPF were larger than direct effects. Shortwave radiation and cloud droplet concentration typically changed in the same way. Similar change patterns were found for T2 and PBL height. PBL nucleation led to a net increase of precipitation during the simulation period. Sensitivity tests showed that the combination of PBL NPF together with aqueous chemistry was the predominant cause of SO4 reduction.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A11L0166D
- Keywords:
-
- 0315 Biosphere/atmosphere interactions;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES