Synthesizing Exoplanet Demographics
Abstract
The discovery of thousands of exoplanets has revealed a large diversity of systems, the majority of which look nothing like our own. On the theoretical side, we are able to make ab initio calculations that make predictions about the properties of exoplanets. However, in order to link these predictions with observations, we must construct a statistical census of exoplanet demographics over as broad a range of parameters as possible. Current constraints on exoplanet demographics are typically constructed using the results of individual surveys using a single detection technique, and thus are incomplete. The only way to derive a statistically-complete census that samples a wide region of exoplanet parameter space is to synthesize the results from surveys employing all of the different discovery methods at our disposal. I present the first studies to demonstrate that this is actually possible, and describe a (mostly) de-biased exoplanet census that is constructed from the synthesis of results from microlensing, radial velocity, and direct imaging surveys. I will also discuss future work that will include the results of transit surveys (in particular, Kepler discoveries) to complete the census of exoplanets in our Galaxy, and describe the application of this census to develop the most comprehensive, observationally-constrained models of planet formation and evolution that have been derived to date.
- Publication:
-
American Astronomical Society Meeting Abstracts #227
- Pub Date:
- January 2016
- Bibcode:
- 2016AAS...22742003C